首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75492篇
  免费   6613篇
  国内免费   3578篇
医药卫生   85683篇
  2023年   555篇
  2022年   800篇
  2021年   1599篇
  2020年   1288篇
  2019年   1430篇
  2018年   1951篇
  2017年   1581篇
  2016年   1619篇
  2015年   2069篇
  2014年   2645篇
  2013年   2766篇
  2012年   3810篇
  2011年   4000篇
  2010年   2478篇
  2009年   2211篇
  2008年   3115篇
  2007年   3278篇
  2006年   3072篇
  2005年   2784篇
  2004年   2151篇
  2003年   2228篇
  2002年   1943篇
  2001年   5151篇
  2000年   5132篇
  1999年   4591篇
  1998年   1769篇
  1997年   1402篇
  1996年   880篇
  1995年   796篇
  1994年   744篇
  1993年   575篇
  1992年   2116篇
  1991年   1833篇
  1990年   1663篇
  1989年   1606篇
  1988年   1403篇
  1987年   1282篇
  1986年   1122篇
  1985年   960篇
  1984年   612篇
  1983年   477篇
  1982年   258篇
  1981年   190篇
  1980年   144篇
  1979年   287篇
  1978年   77篇
  1974年   76篇
  1973年   95篇
  1972年   71篇
  1969年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The precise cause of the bands of Fontana, striations on peripheral nerves visible to the naked eye, has been the subject of debate for hundreds of years. Some researchers have described them as reflecting the sinuous course of nerve fibres passing through nerves, and others have proposed that endoneurial collagen and sheaths surrounding nerves play a role in their appearance. We hypothesised that the bands are caused exclusively by reflection of light from the surfaces of nerve fibres travelling in phase in sinusoidal waveforms through peripheral nerves. We aligned images of obliquely illuminated nerves with confocal images of axons in those nerves, and the numbers and positions of the bands precisely matched the axonal waves. We also developed three‐dimensional models of nerves with representations of the sinusoidal path of axons at their surface. We observed patterns resembling the bands of Fontana when these models were obliquely illuminated. This provides evidence that the bands of Fontana can be caused by light reflected sinusoidal path of axons alone. We subsequently describe a mechanism of band production based on our observations of both nerves and models. We report that smaller diameter nerves such as phrenic nerves and distal branches of sciatic nerves have shorter band intervals than larger nerves, such as proximal trunks of sciatic nerves, and that shorter band intervals correlate with longer axons per unit length of nerve, which suggests a greater tolerance to stretch. Inspection of banding patterns on peripheral nerves may permit prediction of axon length within nerves, and assist in the interpretation of nerve conduction data, especially in diseases where axon path has become altered.  相似文献   
32.
Journal of the Association for Research in Otolaryngology - Previous studies in budgerigars (Melopsittacus undulatus) have indicated that they experience attention capture in a qualitatively...  相似文献   
33.
34.
35.
Objective: To evaluate the characteristics at admission of patients with moderate COVID-19 in Wuhan and to explore risk factors associated with the severe prognosis of the disease for prognostic prediction.Methods: In this retrospective study, moderate and severe disease was defined according to the report of the WHO-China Joint Mission on COVID-19. Clinical characteristics and laboratory findings of 172 patients with laboratory-confirmed moderate COVID-19 were collected when they were admitted to the Cancer Center of Wuhan Union Hospital between February 13, 2020 and February 25, 2020. This cohort was followed to March 14, 2020. The outcomes, being discharged as mild cases or developing into severe cases, were categorized into two groups. The data were compared and analyzed with univariate logistic regression to identify the features that differed significantly between the two groups. Based on machine learning algorithms, a further feature selection procedure was performed to identify the features that can contribute the most to the prediction of disease severity.Results: Of the 172 patients, 112 were discharged as mild cases, and 60 developed into severe cases. Four clinical characteristics and 18 laboratory findings showed significant differences between the two groups in the statistical test (P<0.01) and univariate logistic regression analysis (P<0.01). In the further feature selection procedure, six features were chosen to obtain the best performance in discriminating the two groups with a linear kernel support vector machine. The mean accuracy was 91.38%, with a sensitivity of 0.90 and a specificity of 0.94. The six features included interleukin-6, high-sensitivity cardiac troponin I, procalcitonin, high-sensitivity C-reactive protein, chest distress and calcium level.Conclusions: With the data collected at admission, the combination of one clinical characteristic and five laboratory findings contributed the most to the discrimination between the two groups with a linear kernel support vector machine classifier. These factors may be risk factors that can be used to perform a prognostic prediction regarding the severity of the disease for patients with moderate COVID-19 in the early stage of the disease.  相似文献   
36.
Background: Sorafenib, an oral multi-kinase inhibitor of rapidly accelerated fibrosarcoma; vascular endothelial growth factor receptor-2/3, platelet-derived growth factor receptor, c-Kit, and Flt-3 signaling, is approved for treatment of advanced hepatocellular carcinoma (HCC). However, the benefit of sorafenib is often diminished because of acquired resistance through the reactivation of ERK signaling in sorafenib-resistant HCC cells. In this work, we investigated whether adding LY3214996, a selective ERK1/2 inhibitor, to sorafenib would increase the anti-tumor effectiveness of sorafenib to HCC cells.Methods: The Huh7 cell line was used as a cell model for treatment with sorafenib, LY3214996, and their combination. Phosphorylation of the key kinases in the Ras/Raf/MAPK and PI3K/Akt pathways, protein expression of the cell cycle, and apoptosis migration were assessed with western blot. MTT and colony-formation assays were used to evaluate cell proliferation. Wound-healing assay was used to assess cell migration. Cell cycle and apoptosis analyses were conducted with flow cytometry.Results: LY3214996 decreased phosphorylation of the Ras/Raf/MAPK and PI3K/Akt pathways, including p-c-Raf, p-P90RSK, p-S6K and p-eIF4EBP1 activated by sorafenib, despite increased p-ERK1/2 levels. LY3214996 increased the anti-proliferation, anti-migration, cell-cycle progression, and pro-apoptotic effects of sorafenib on Huh7R cells.Conclusions: Reactivation of ERK1/2 appears to be a molecular mechanism of acquired resistance of HCC to sorafenib. LY3214996 combined with sorafenib enhanced the anti-tumor effects of sorafenib in HCC. These findings form a theoretical basis for trial of LY3214996 combined with sorafenib as second-line treatment of sorafenib-resistant in advanced HCC.  相似文献   
37.
38.
Basement membrane (BM) is a thin layer of extracellular matrix that surrounds most animal tissues, serving as a physical barrier while allowing nutrient exchange. Although they have important roles in tissue structural integrity, physical properties of BMs remain largely uncharacterized, which limits our understanding of their mechanical functions. Here, we perform pressure-controlled inflation and deflation to directly measure the nonlinear mechanics of BMs in situ. We show that the BMs behave as a permeable, hyperelastic material whose mechanical properties and permeability can be measured in a model-independent manner. Furthermore, we find that BMs exhibit a remarkable nonlinear stiffening behavior, in contrast to the reconstituted Matrigel. This nonlinear stiffening behavior helps the BMs to avoid the snap-through instability (or structural softening) widely observed during the inflation of most elastomeric balloons and thus maintain sufficient confining stress to the enclosed tissues during their growth.

Basement membrane (BM) is a thin layer of fibrous matrix separating cells from the connecting tissues, which functions as a physical barrier and widely exists across multicellular organisms (1). The BM is typically composed of laminins, collagen IV, nidogens, and proteoglycans; laminin and collagen IV are the major components that constitute networks forming the structure of the BM, and nidogen and proteoglycans are associated with the laminin and collagen IV networks. As a physical barrier, the structural and mechanical properties of BM are important in the organization and morphogenesis of tissues and organs as well as in the maintenance of adult functions (2); abnormal BM has been associated with a variety of diseases such as cancer (3). For example, in metastasis, cancer cells must invade through BMs to escape from the primary tumor—a process that causes 90% of cancer-related death (4). Indeed, breaks in BMs can be observed in malignant tumors (5). Thus, mechanical properties of the BM are considered to play important roles in regulating cancer cell invasion (6, 7). Furthermore, as a physical barrier differentiating different parts of tissues, BMs are required to be permeable to small molecules to allow exchange of water and nutrients; the permeability of BM is thus one of the essential kinetic parameters regulating biomolecule exchange and activities of internal cells (8, 9). Given the importance of BMs as a semipermeable barrier maintaining tissue structural integrity, however, their permeability and mechanical properties remain largely unknown, mainly due to the lack of direct measurement methods, especially in situ. This limits our understanding of the physical role of BMs in various physiological and pathological processes such as tumor development and angiogenesis.Determining the mechanical properties of intact BMs in situ is challenging because of their irregular shape, small thickness, and tight connection to the cells inside. Due to these limitations, conventional mechanical tests such as tensile, compression, and bending tests are difficult to be applied to characterize the mechanical behavior of the BM in situ. Instead, previous measurements had been carried out on fragmented BMs isolated from various tissues (e.g., via atomic force microscopy [AFM] indentation) and found that the BM stiffness ranges from ∼kPa to ∼MPa (1017). In addition, a constitutive relationship is required to extract the material parameters such as elastic modulus and permeability from these experimental measurements. However, like most biological tissues, a reliable constitutive model for the BM is not yet available, causing additional difficulties in obtaining its mechanical parameters from most traditional experiments.In this work, we demonstrate an in situ method to simultaneously measure both the elastic properties and permeability of intact BM in breast cancer spheroid by recording the deflation process of an inflated BM filled with phosphate buffered saline (PBS) by microinjection without requiring complex sample preparation and post-data processing. During the deflation of the BM, its elastic retraction generates a pressure difference to drive the liquid flow through the membrane; the liquid flux can be calculated from the reduction of the intact BM diameter. With the BM thickness measured by transmission electron microscopy (TEM), we can determine the shear modulus, permeability, and diffusivity of the intact BM. Moreover, we find from our measurements that the elasticity of BM is highly nonlinear with a strong strain-stiffening effect. Furthermore, we discuss the possible impact of the strain-stiffening effects of BM on its functions.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号